skip to main content


Search for: All records

Creators/Authors contains: "Fleisher, Martin Q."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    One of the primary sources of micronutrients to the sea surface in remote ocean regions is the deposition of atmospheric dust. Geographic patterns in biogeochemical processes such as primary production and nitrogen fixation that require micronutrients like iron (Fe) are modulated in part by the spatial distribution of dust supply. Global models of dust deposition rates are poorly calibrated in the open ocean, owing to the difficulty of determining dust fluxes in sparsely sampled regions. We present new estimates of dust and Fe input rates from measurements of dissolved and particulate thorium isotopes230Th and232Th on theFS SonneSO245 section (GEOTRACES process study GPpr09) in the South Pacific. We first discuss high‐resolution upper water column profiles of Th isotopes and the implications for the systematics of dust flux reconstructions from seawater Th measurements. We find dust fluxes in the center of the highly oligotrophic South Pacific Gyre that are the lowest of any mean annual dust input rates measured in the global oceans, but that are 1–2 orders of magnitude higher than those estimated by global dust models. We also determine dust‐borne Fe fluxes and reassess the importance of individual Fe sources to the surface South Pacific Gyre, finding that dust dissolution, not vertical or lateral diffusion, is the primary Fe source. Finally, we combine our estimates of Fe flux in dust with previously published cellular and enzymatic quotas to determine theoretical upper limits on annual average nitrogen fixation rates for a given Fe deposition rate.

     
    more » « less
  2. Abstract

    The Southern Ocean hosts complex connections between ocean physics, chemistry, and biology. Changes in these connections are hypothesized to be responsible for significant alterations of ocean biogeochemistry and carbon storage both on glacial‐interglacial timescales and in the future due to anthropogenic forcing. Isotopes of thorium (230Th and232Th) and protactinium (231Pa) have been widely applied as tools to study paleoceanographic conditions in the Southern Ocean. However, understanding of the chemical behavior of these isotopes in the modern Southern Ocean has been limited by a paucity of high‐resolution observations. In this study, we present measurements of dissolved230Th,231Pa, and232Th on a meridional transect along 170°W from 67°S to 54°S in the Pacific sector of the Southern Ocean, with high vertical and meridional sampling resolution. We find Th/Pa fractionation factors below 1, highlighting the preferential removal of Pa relative to Th in a region with low lithogenic inputs where the particle flux is dominated by biogenic opal. We also find steep gradients in all three of these isotopes along neutral density surfaces from north to south, demonstrating the importance of isopycnal mixing in transporting these nuclides to the Southern Ocean. Our results suggest that231Pa and230Th in the Southern Ocean are highly sensitive tracers of physical transport that may find use in studies of Southern Ocean biogeochemical‐physical connections in the past, present, and future.

     
    more » « less